When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Georg Joachim Rheticus - Wikipedia

    en.wikipedia.org/wiki/Georg_Joachim_Rheticus

    Georg Joachim de Porris, also known as Rheticus (/ ˈ r ɛ t ɪ k ə s /; 16 February 1514 – 4 December 1574), was a mathematician, astronomer, cartographer, navigational-instrument maker, medical practitioner, and teacher. He is perhaps best known for his trigonometric tables and as Nicolaus Copernicus's sole pupil. [3]

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

  4. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Trigonometry has been noted for its many identities, that is, equations that are true for all possible inputs. [83] Identities involving only angles are known as trigonometric identities. Other equations, known as triangle identities, [84] relate both the sides and angles of a given triangle.

  5. History of trigonometry - Wikipedia

    en.wikipedia.org/wiki/History_of_trigonometry

    The Opus palatinum de triangulis of Georg Joachim Rheticus, a student of Copernicus, was probably the first in Europe to define trigonometric functions directly in terms of right triangles instead of circles, with tables for all six trigonometric functions; this work was finished by Rheticus' student Valentin Otho in 1596.

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  7. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length x , {\displaystyle x,} then applying the Pythagorean theorem and definitions of the trigonometric ratios.

  8. Outline of trigonometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_trigonometry

    Geometry is used extensively in trigonometry. Angle – the angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays lie in a plane, but this plane does not have to be a Euclidean plane.

  9. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.