Search results
Results From The WOW.Com Content Network
Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
The elementary functions are constructed by composing arithmetic operations, the exponential function (), the natural logarithm (), trigonometric functions (,), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's ...
It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...
The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm. The sum of the columns M1-M7 gives ...
In MATLAB, the function kron (A, B) is used for this product. These often generalize to multi-dimensional arguments, and more than two arguments. In the Python library NumPy, the outer product can be computed with function np.outer(). [8] In contrast, np.kron results in a flat array.
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.