When.com Web Search

  1. Ad

    related to: calculate long edge of triangle base length of pyramid formula example equation

Search results

  1. Results From The WOW.Com Content Network
  2. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    [17] [18] A tetrahedron or triangular pyramid is an example that has four equilateral triangles, with all edges equal in length, and one of them is considered as the base. Because the faces are regular, it is an example of a Platonic solid and deltahedra, and it has tetrahedral symmetry. [19] [20] A pyramid with the base as circle is known as ...

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The tetrahedron is one kind of pyramid, which is a polyhedron with a flat polygon base and triangular faces connecting the base to a common point. In the case of a tetrahedron, the base is a triangle (any of the four faces can be considered the base), so a tetrahedron is also known as a "triangular pyramid".

  4. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  5. Base (geometry) - Wikipedia

    en.wikipedia.org/wiki/Base_(geometry)

    The extended base of a triangle (a particular case of an extended side) is the line that contains the base. When the triangle is obtuse and the base is chosen to be one of the sides adjacent to the obtuse angle , then the altitude dropped perpendicularly from the apex to the base intersects the extended base outside of the triangle.

  6. Elongated triangular pyramid - Wikipedia

    en.wikipedia.org/wiki/Elongated_triangular_pyramid

    An elongated triangular pyramid with edge length has a height, by adding the height of a regular tetrahedron and a triangular prism: [4] (+). Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares: [2] (+), and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up: [2]: ((+)).

  7. Seked - Wikipedia

    en.wikipedia.org/wiki/Seked

    The most famous example of a seked slope is of the Great Pyramid of Giza in Egypt built around 2550 BC. Based on modern surveys, the faces of this monument had a seked of ⁠5 + 1 / 2 ⁠ , or 5 palms and 2 digits, in modern terms equivalent to a slope of 1.27, a gradient of 127%, and an elevation of 51.84° from the horizontal (in our 360 ...

  8. Trirectangular tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trirectangular_tetrahedron

    If the legs have lengths a, b, c, then the trirectangular tetrahedron has the volume [2] =. The altitude h satisfies [3] = + +. The area of the base is given by [4] =. The solid angle at the right-angled vertex, from which the opposite face (the base) subtends an octant, has measure π /2 steradians, one eighth of the surface area of a unit sphere.

  9. Apothem - Wikipedia

    en.wikipedia.org/wiki/Apothem

    This formula can be derived by partitioning the n-sided polygon into n congruent isosceles triangles, and then noting that the apothem is the height of each triangle, and that the area of a triangle equals half the base times the height. The following formulations are all equivalent: