When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  3. Closest pair of points problem - Wikipedia

    en.wikipedia.org/wiki/Closest_pair_of_points_problem

    The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...

  4. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]

  5. Taxicab geometry - Wikipedia

    en.wikipedia.org/wiki/Taxicab_geometry

    In taxicab geometry, the distance between any two points equals the length of their shortest grid path. This different definition of distance also leads to a different definition of the length of a curve, for which a line segment between any two points has the same length as a grid path between those points rather than its Euclidean length.

  6. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  7. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Consider the first case, with points = (,,) and = (,,). The vector displacement from x to y is nonzero because the points are distinct, and represents the direction of the line. That is, every displacement between points on the line L is a scalar multiple of d = y – x.

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.

  9. Skew lines - Wikipedia

    en.wikipedia.org/wiki/Skew_lines

    The nearest points and form the shortest line segment joining Line 1 and Line 2: d = ‖ c 1 − c 2 ‖ . {\displaystyle d=\Vert \mathbf {c_{1}} -\mathbf {c_{2}} \Vert .} The distance between nearest points in two skew lines may also be expressed using other vectors: