When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    The volume of a spherical cap with a curved base can be calculated by considering two spheres with radii and , separated by some distance , and for which their surfaces intersect at =. That is, the curvature of the base comes from sphere 2.

  3. Wigner–Seitz radius - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_radius

    The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the ...

  4. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...

  5. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  6. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    For most practical purposes, the volume inside a sphere inscribed in a cube can be approximated as 52.4% of the volume of the cube, since V = ⁠ π / 6 ⁠ d 3, where d is the diameter of the sphere and also the length of a side of the cube and ⁠ π / 6 ⁠ ≈ 0.5236.

  7. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.

  8. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...

  9. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.