When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = ⁠ 1+ √ 5 / 2 ⁠ is the golden ratio. Then the only real solution x = −1.84208... is given by

  3. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    For even values of n, positive numbers also have a negative nth root, while negative numbers do not have a real nth root. For odd values of n, every negative number x has a real negative nth root. For example, −2 has a real 5th root, = … but −2 does not have any real 6th roots.

  4. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    For n = 5, 10, none of the non-real roots of unity (which satisfy a quartic equation) is a quadratic integer, but the sum z + z = 2 Re z of each root with its complex conjugate (also a 5th root of unity) is an element of the ring Z[⁠ 1 + √ 5 / 2 ⁠] (D = 5).

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative. On the other hand, r 1 – r 2 and r 1 – r 3 are complex conjugates, and their product is real and positive. [ 23 ]

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The rule states that if the nonzero terms of a single-variable polynomial with real coefficients are ordered by descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of sign changes between consecutive (nonzero) coefficients, or is less than it by an even number.

  7. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    Neither does it have linear factors modulo 2 or 3. The Galois group of f(x) modulo 2 is cyclic of order 6, because f(x) modulo 2 factors into polynomials of orders 2 and 3, (x 2 + x + 1)(x 3 + x 2 + 1). f(x) modulo 3 has no linear or quadratic factor, and hence is irreducible. Thus its modulo 3 Galois group contains an element of order 5.

  8. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    Vincent's theorem (1834) [4] provides a method for real-root isolation, which is at the basis of the most efficient real-root-isolation algorithms. It concerns the positive real roots of a square-free polynomial (that is a polynomial without multiple roots).

  9. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none. This principle can be proven by reference to the intermediate value theorem : since polynomial functions are continuous , the function value must cross zero, in the process of changing from ...