Ad
related to: 2 digit division with remainders
Search results
Results From The WOW.Com Content Network
43 = (−9) × (−5) + (−2) and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5 ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
At this point the process is repeated enough times to reach a stopping point: The largest number by which the divisor 4 can be multiplied without exceeding 10 is 2, so 2 is written above as the second leftmost quotient digit. This 2 is then multiplied by the divisor 4 to get 8, which is the largest multiple of 4 that does not exceed 10; so 8 is ...
The following exposition assumes that the numbers are broken into two-digit pieces, separated by commas: e.g. 3456 becomes 34,56. In general x,y denotes x⋅100 + y and x,y,z denotes x⋅10000 + y⋅100 + z, etc. Suppose that we wish to divide c by a, to obtain the result b. (So a × b = c.)
One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.
Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces ...
The first number to be divided by the divisor (4) is the partial dividend (9). One writes the integer part of the result (2) above the division bar over the leftmost digit of the dividend, and one writes the remainder (1) as a small digit above and to the right of the partial dividend (9).