When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    For pairs of objects that are not both points, the distance can most simply be defined as the smallest distance between any two points from the two objects, although more complicated generalizations from points to sets such as Hausdorff distance are also commonly used. [6] Formulas for computing distances between different types of objects include:

  3. Signed distance function - Wikipedia

    en.wikipedia.org/wiki/Signed_distance_function

    The graph (bottom, in red) of the signed distance between the points on the xy plane (in blue) and a fixed disk (also represented on top, in gray) A more complicated set (top) and the graph of its signed distance function (bottom, in red).

  4. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    For two objects and having descriptors, the similarity is defined as: = = =, where the w i j k {\displaystyle w_{ijk}} are non-negative weights usually set to 1 {\displaystyle 1} [ 2 ] and s i j k {\displaystyle s_{ijk}} is the similarity between the two objects regarding their k {\displaystyle k} -th variable.

  5. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.

  6. Distance - Wikipedia

    en.wikipedia.org/wiki/Distance

    A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero. The distance between distinct objects is always positive. Distance is symmetric: the distance from x to y is always the same as the distance from y to x.

  7. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.

  8. Hausdorff distance - Wikipedia

    en.wikipedia.org/wiki/Hausdorff_distance

    The definition of the Hausdorff distance can be derived by a series of natural extensions of the distance function (,) in the underlying metric space M, as follows: [7] Define a distance function between any point x of M and any non-empty set Y of M by: (,) = {(,)}.

  9. Metric space - Wikipedia

    en.wikipedia.org/wiki/Metric_space

    The distance is measured by a function called a metric or distance function. [1] Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry . The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance.