Ad
related to: right spherical triangles examples
Search results
Results From The WOW.Com Content Network
For example, an octant of a sphere is a spherical triangle with three right angles, so that the excess is π /2. In practical applications it is often small: for example the triangles of geodetic survey typically have a spherical excess much less than 1' of arc. [14]
Special cases are right triangles (p q 2). Uniform solutions are constructed by a single generator point with 7 positions within the fundamental triangle, the 3 corners, along the 3 edges, and the triangle interior. All vertices exist at the generator, or a reflected copy of it. Edges exist between a generator point and its image across a mirror.
Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...
The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.
The above algorithms become much simpler if one of the angles of a triangle (for example, the angle C) is the right angle. Such a spherical triangle is fully defined by its two elements, and the other three can be calculated using Napier's Pentagon or the following relations.
The spherical octant itself is the intersection of the sphere with one octant of space. Uniquely among spherical triangles, the octant is its own polar triangle. [2] The octant can be parametrized using a rational quartic Bézier triangle. [3] The solid angle subtended by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [4]
For premium support please call: 800-290-4726 more ways to reach us
The Kepler triangle is a right triangle whose sides are in geometric progression. If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up ...