Search results
Results From The WOW.Com Content Network
The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical ...
In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it. Spherical geometry or spherics (from Ancient Greek σφαιρικά) is the geometry of the two-dimensional surface of a sphere [a] or the n-dimensional surface of higher dimensional spheres.
The spherical octant itself is the intersection of the sphere with one octant of space. Uniquely among spherical triangles, the octant is its own polar triangle. [2] The octant can be parametrized using a rational quartic Bézier triangle. [3] The solid angle subtended by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [4]
The vertex figure can be discovered by considering the Wythoff symbol: p|q r - 2p edges, alternating q-gons and r-gons. Vertex figure (q.r) p. p|q 2 - p edges, q-gons (here r=2 so the r-gons are degenerate lines).
The excess, or area, of small triangles is very small. For example, consider an equilateral spherical triangle with sides of 60 km on a spherical Earth of radius 6371 km; the side corresponds to an angular distance of 60/6371=.0094, or approximately 10 −2 radians (subtending an angle of 0.57
In spherical trigonometry, the law of cosines (also called the cosine rule for sides [1]) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Spherical triangle solved by the law of cosines.
An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.
Spherical triangle. In spherical trigonometry, the half side formula relates the angles and lengths of the sides of spherical triangles, which are triangles drawn on the surface of a sphere and so have curved sides and do not obey the formulas for plane triangles. [1]