When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Water splitting - Wikipedia

    en.wikipedia.org/wiki/Water_splitting

    Concentrated solar power can achieve the high temperatures necessary to split water. Hydrosol-2 is a 100-kilowatt pilot plant at the Plataforma Solar de Almería in Spain which uses sunlight to obtain the required 800 to 1,200 °C (1,070 to 1,470 K; 1,470 to 2,190 °F) to split water. Hydrosol II has been in operation since 2008.

  3. Photoelectrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Photoelectrolysis_of_water

    The ongoing development in materials science and cell design is likely to enhance the viability of photoelectrolysis, making it a key player in the future landscape of renewable energy technologies. Continued research and investment in overcoming existing challenges will be crucial to harness the full potential of this technology.

  4. Photocatalytic water splitting - Wikipedia

    en.wikipedia.org/wiki/Photocatalytic_water_splitting

    The process of water-splitting is a highly endothermic process (ΔH > 0). Water splitting occurs naturally in photosynthesis when the energy of four photons is absorbed and converted into chemical energy through a complex biochemical pathway (Dolai's or Kok's S-state diagrams). [3] O–H bond homolysis in water requires energy of 6.5 - 6.9 eV ...

  5. Anion exchange membrane electrolysis - Wikipedia

    en.wikipedia.org/wiki/Anion_exchange_membrane...

    Unlike PEM, AEM conducts hydroxide ions. The major advantage of AEM water electrolysis is that a high-cost noble metal catalyst is not required, low-cost transition metal catalyst can be used instead. [1] [2] AEM electrolysis is similar to alkaline water electrolysis, which uses a non-ion-selective separator instead of an anion-exchange membrane.

  6. Solid oxide electrolyzer cell - Wikipedia

    en.wikipedia.org/wiki/Solid_oxide_electrolyzer_cell

    The general function of the electrolyzer cell is to split water in the form of steam into pure H 2 and O 2. Steam is fed into the porous cathode. When a voltage is applied, the steam moves to the cathode-electrolyte interface and is reduced to form pure H 2 and oxygen ions. The hydrogen gas then diffuses back up through the cathode and is ...

  7. Electrolysis of water - Wikipedia

    en.wikipedia.org/wiki/Electrolysis_of_water

    Pure water has a charge carrier density similar to semiconductors [12] [page needed] since it has a low autoionization, K w = 1.0×10 −14 at room temperature and thus pure water conducts current poorly, 0.055 μS/cm. [13] Unless a large potential is applied to increase the autoionization of water, electrolysis of pure water proceeds slowly ...

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Thermochemical cycle - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_cycle

    In chemistry, thermochemical cycles combine solely heat sources (thermo) with chemical reactions to split water into its hydrogen and oxygen components. [1] The term cycle is used because aside of water, hydrogen and oxygen, the chemical compounds used in these processes are continuously recycled.