Search results
Results From The WOW.Com Content Network
Sister chromosomes in the bacterium Escherichia coli are induced by stressful conditions to condense and undergo pairing. [6] Stress-induced condensation occurs by a non-random, zipper-like convergence of sister chromosomes.
This is an accepted version of this page This is the latest accepted revision, reviewed on 23 January 2025. DNA molecule containing genetic material of a cell This article is about the DNA molecule. For the genetic algorithm, see Chromosome (genetic algorithm). Chromosome (10 7 - 10 10 bp) DNA Gene (10 3 - 10 6 bp) Function A chromosome and its packaged long strand of DNA unraveled. The DNA's ...
The structure of the condensed chromatin is thought to be loops of 30 nm fibre to a central scaffold of proteins. It is, however, not well-characterised. Chromosome scaffolds play an important role to hold the chromatin into compact chromosomes. Loops of 30 nm structure further condense with scaffold, into higher order structures. [21]
In the first stage of prophase I, leptotene (from the Greek for "delicate"), chromosomes begin to condense. Each chromosome is in a diploid state and consists of two sister chromatids; however, the chromatin of the sister chromatids is not yet condensed enough to be resolvable in microscopy.
Metaphase (from Ancient Greek μετα- beyond, above, transcending and from Ancient Greek φάσις (phásis) 'appearance') is a stage of mitosis in the eukaryotic cell cycle in which chromosomes are at their second-most condensed and coiled stage (they are at their most condensed in anaphase). [1]
At the onset of prophase, chromatin fibers condense into discrete chromosomes that are typically visible at high magnification through a light microscope. In this stage, chromosomes are long, thin, and thread-like. Each chromosome has two chromatids. The two chromatids are joined at the centromere.
MEN-mediated Cdk dephosphorylation is necessary for chromosome decondensation. [2] [5] In vertebrates, chromosome decondensation is initiated only after nuclear import is reestablished. If lamin transport through nuclear pores is prevented, chromosomes remain condensed following cytokinesis, and cells fail to reenter the next S phase. [16]
On the other hand, condensin I is present in the cytoplasm during interphase, and gains access to chromosomes only after the nuclear envelope breaks down (NEBD) at the end of prophase. During prometaphase and metaphase, condensin I and condensin II cooperate to assemble rod-shaped chromosomes, in which two sister chromatids are fully