Search results
Results From The WOW.Com Content Network
The work function depends on the configurations of atoms at the surface of the material. For example, on polycrystalline silver the work function is 4.26 eV, but on silver crystals it varies for different crystal faces as (100) face: 4.64 eV, (110) face: 4.52 eV, (111) face: 4.74 eV. [13] Ranges for typical surfaces are shown in the table below ...
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress. Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a P-V diagram.
In solution chemistry and biochemistry, the Gibbs free energy decrease (∂G/∂ξ, in molar units, denoted cryptically by ΔG) is commonly used as a surrogate for (−T times) the global entropy produced by spontaneous chemical reactions in situations where no work is being done; or at least no "useful" work; i.e., other than perhaps ± P dV.
This article needs attention from an expert in chemistry. The specific problem is: Incomplete list. WikiProject Chemistry may be able to help recruit an expert.
In particular Joule had experimented on the amount of mechanical work generated by friction needed to raise the temperature of a pound of water by one degree Fahrenheit and found a consistent value of 778.24 foot pound force (4.1550 J·cal −1).
In thermodynamics, the free energy difference = between two states A and B is connected to the work W done on the system through the inequality: , with equality holding only in the case of a quasistatic process, i.e. when one takes the system from A to B infinitely slowly (such that all intermediate states are in thermodynamic equilibrium).
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...