When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = = The value of 0! is 1, according to the convention for an empty product . [ 1 ]

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    From this it follows that the rightmost digit is always 0, the second can be 0 or 1, the third 0, 1 or 2, and so on (sequence A124252 in the OEIS).The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS).

  4. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Moreover, if one sets x = 1 + t, one gets without computation that () = (+) is a polynomial in t with the same first coefficient 3 and constant term 1. [2] The rational root theorem implies thus that a rational root of Q must belong to {,}, and thus that the rational roots of P satisfy = + {,,,}.

  5. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    a = b: sg | a − b | (Kleene's convention was to represent true by 0 and false by 1; presently, especially in computers, the most common convention is the reverse, namely to represent true by 1 and false by 0, which amounts to changing sg into ~sg here and in the next item) a < b: sg( a' ∸ b )

  6. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    There’s proof of an exact number for 3 dimensions, although that took until the 1950s. ... since 1 and -6 are integers. The roots of x²-6=0 are x=√6 and x=-√6, so that means √6 and -√6 ...

  7. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    f has degree at most p − 2 (since the leading terms cancel), and modulo p also has the p − 1 roots 1, 2, ..., p − 1. But Lagrange's theorem says it cannot have more than p − 2 roots. Therefore, f must be identically zero (mod p), so its constant term is (p − 1)! + 10 (mod p). This is Wilson's theorem.

  8. Empty product - Wikipedia

    en.wikipedia.org/wiki/Empty_product

    For example, the empty products 0! = 1 (the factorial of zero) and x 0 = 1 shorten Taylor series notation (see zero to the power of zero for a discussion of when x = 0). Likewise, if M is an n × n matrix, then M 0 is the n × n identity matrix , reflecting the fact that applying a linear map zero times has the same effect as applying the ...

  9. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    A ring in which the zero-product property holds is called a domain.A commutative domain with a multiplicative identity element is called an integral domain.Any field is an integral domain; in fact, any subring of a field is an integral domain (as long as it contains 1).