Search results
Results From The WOW.Com Content Network
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
A best approximation for the second definition is also a best approximation for the first one, but the converse is not true in general. [ 4 ] The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction.
For example, in the fraction 3 / 4 , the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3 / 4 of a cake. Fractions can be used to represent ratios and division. [1]
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
A necessary (but not sufficient) condition for solvability is that n is not divisible by 4 or by a prime of form 4k + 3. [note 3] Thus, for example, x 2 − 3 y 2 = −1 is never solvable, but x 2 − 5 y 2 = −1 may be. [27] The first few numbers n for which x 2 − n y 2 = −1 is solvable are with only one trivial solution: 1
The rate of convergence depends on the absolute value of the ratio between the two roots: the farther that ratio is from unity, the more quickly the continued fraction converges. When the monic quadratic equation with real coefficients is of the form x 2 = c, the general solution described above is useless because division by zero is not well ...
Thought of quotitively, a division problem can be solved by repeatedly subtracting groups of the size of the divisor. [1] For instance, suppose each egg carton fits 12 eggs, and the problem is to find how many cartons are needed to fit 36 eggs in total. Groups of 12 eggs at a time can be separated from the main pile until none are left, 3 groups: