Search results
Results From The WOW.Com Content Network
In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
The arithmetic mean of a population, or population mean, is often denoted μ. [2] The sample mean ¯ (the arithmetic mean of a sample of values drawn from the population) makes a good estimator of the population mean, as its expected value is equal to the population mean (that is, it is an unbiased estimator).
Also, the characteristic function of the sample mean X of n independent observations has characteristic function φ X (t) = (e −|t|/n) n = e −|t|, using the result from the previous section. This is the characteristic function of the standard Cauchy distribution: thus, the sample mean has the same distribution as the population itself.
We could then calculate the sample means within the treated and untreated groups of subjects, and compare these means to each other. In a "paired difference analysis", we would first subtract the pre-treatment value from the post-treatment value for each subject, then compare these differences to zero. See also paired permutation test.
Since the data in this context is defined to be (x, y) pairs for every observation, the mean response at a given value of x, say x d, is an estimate of the mean of the y values in the population at the x value of x d, that is ^ ^. The variance of the mean response is given by: [11]
To determine the value (), note that we rotated the plane so that the line x+y = z now runs vertically with x-intercept equal to c. So c is just the distance from the origin to the line x + y = z along the perpendicular bisector, which meets the line at its nearest point to the origin, in this case ( z / 2 , z / 2 ) {\displaystyle (z/2,z/2)\,} .
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.