Search results
Results From The WOW.Com Content Network
From the multiplication tables, the square root of the mantissa must be 8 point something because a is between 8×8 = 64 and 9×9 = 81, so k is 8; something is the decimal representation of R. The fraction R is 75 − k 2 = 11, the numerator, and 81 − k 2 = 17, the denominator. 11/17 is a little less than 12/18 = 2/3 = .67, so guess .66 (it's ...
A line can be drawn from the top corner of a cube diagonally to the bottom corner on the same side of the cube, which is equal to 4r. Using geometry, and the side length, a can be related to r as: =. Knowing this and the formula for the volume of a sphere, it becomes possible to calculate the APF as follows:
Packing circles in a square - closely related to spreading points in a unit square with the objective of finding the greatest minimal separation, d n, between points. To convert between these two formulations of the problem, the square side for unit circles will be L = 2 + 2 / d n {\displaystyle L=2+2/d_{n}} .
Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]
Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
Considered extrinsically, as a hypersurface embedded in (+) -dimensional Euclidean space, an -sphere is the locus of points at equal distance (the radius) from a given center point. Its interior , consisting of all points closer to the center than the radius, is an ( n + 1 ) {\displaystyle (n+1)} -dimensional ball .