When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The extension to multiple and/or vector-valued predictor variables (denoted with a capital X) is known as multiple linear regression, also known as multivariable linear regression (not to be confused with multivariate linear regression). [10] Multiple linear regression is a generalization of simple linear regression to the case of more than one ...

  3. Bayesian multivariate linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_multivariate...

    The classical, frequentists linear least squares solution is to simply estimate the matrix of regression coefficients ^ using the Moore-Penrose pseudoinverse: ^ = (). To obtain the Bayesian solution, we need to specify the conditional likelihood and then find the appropriate conjugate prior.

  4. Multivariate statistics - Wikipedia

    en.wikipedia.org/wiki/Multivariate_statistics

    Multivariate regression attempts to determine a formula that can describe how elements in a vector of variables respond simultaneously to changes in others. For linear relations, regression analyses here are based on forms of the general linear model. Some suggest that multivariate regression is distinct from multivariable regression, however ...

  5. General linear model - Wikipedia

    en.wikipedia.org/wiki/General_linear_model

    The general linear model or general multivariate regression model is a compact way of simultaneously writing several multiple linear regression models. In that sense it is not a separate statistical linear model. The various multiple linear regression models may be compactly written as [1]

  6. Multilevel model - Wikipedia

    en.wikipedia.org/wiki/Multilevel_model

    An example could be a model of student performance that contains measures for individual students as well as measures for classrooms within which the students are grouped. These models can be seen as generalizations of linear models (in particular, linear regression), although they can also extend to non-linear models. These models became much ...

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  8. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [ 2 ]

  9. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.