When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    The volume of the spherical cap and the area of the curved surface may be calculated using combinations of . The radius of the sphere; The radius of the base of the cap; The height of the cap

  3. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...

  4. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder. Let r {\displaystyle r} be the radius of the sphere and cylinder, and h {\displaystyle h} be the height of the cylinder, with the assumption that ...

  5. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.

  6. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    A sphere of radius r has area element = ⁡. This can be found from the volume element in spherical coordinates with r held constant. [9] A sphere of any radius centered at zero is an integral surface of the following differential form: + + =

  7. Wigner–Seitz radius - Wikipedia

    en.wikipedia.org/wiki/Wigner–Seitz_radius

    The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\displaystyle r_{\rm {s}}} is the radius of a sphere whose volume is equal to the ...

  8. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    A sphere (top), rotational ellipsoid (left) and triaxial ellipsoid (right) The volume of a sphere of radius R is . Given the volume of a non-spherical object V, one can calculate its volume-equivalent radius by setting = or, alternatively:

  9. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    Plot of the surface-area:volume ratio (SA:V) for a 3-dimensional ball, showing the ratio decline inversely as the radius of the ball increases. A solid sphere or ball is a three-dimensional object, being the solid figure bounded by a sphere. (In geometry, the term sphere properly refers only to the surface, so a sphere thus lacks volume in this ...