When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally ...

  3. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .

  4. Induction equation - Wikipedia

    en.wikipedia.org/wiki/Induction_equation

    In magnetohydrodynamics, the induction equation is a partial differential equation that relates the magnetic field and velocity of an electrically conductive fluid such as a plasma. It can be derived from Maxwell's equations and Ohm's law , and plays a major role in plasma physics and astrophysics , especially in dynamo theory .

  5. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    A simple interactive tutorial on electromagnetic induction (click and drag magnet back and forth) National High Magnetic Field Laboratory; Roberto Vega. Induction: Faraday's law and Lenz's law – Highly animated lecture, with sound effects, Electricity and Magnetism course page; Notes from Physics and Astronomy HyperPhysics at Georgia State ...

  6. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.

  7. Aharonov–Bohm effect - Wikipedia

    en.wikipedia.org/wiki/Aharonov–Bohm_effect

    It is generally argued that the Aharonov–Bohm effect illustrates the physicality of electromagnetic potentials, Φ and A, in quantum mechanics.Classically it was possible to argue that only the electromagnetic fields are physical, while the electromagnetic potentials are purely mathematical constructs, that due to gauge freedom are not even unique for a given electromagnetic field.

  8. A Treatise on Electricity and Magnetism - Wikipedia

    en.wikipedia.org/wiki/A_Treatise_on_Electricity...

    Andrew Warwick (2003): "In developing the mathematical theory of electricity and magnetism in the Treatise, Maxwell made a number of errors, and for students with only a tenuous grasp of the physical concepts of basic electromagnetic theory and the specific techniques to solve some problems, it was extremely difficult to discriminate between ...

  9. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers.