Ad
related to: solubility formula for solvent trap area
Search results
Results From The WOW.Com Content Network
Accessible surface area is often used when calculating the transfer free energy required to move a biomolecule from an aqueous solvent to a non-polar solvent, such as a lipid environment. The LCPO method is also used when calculating implicit solvent effects in the molecular dynamics software package AMBER .
It can be calculated by formula: = / [1] where ASA is the solvent accessible surface area and MaxASA is the maximum possible solvent accessible surface area for the residue. [1] Both ASA and MaxASA are commonly measured in .
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
(However, PE only dissolves at temperatures well above 100 °C.) Poly(styrene) has a solubility parameter of 9.1 cal 1/2 cm −3/2, and thus ethyl acetate is likely to be a good solvent. Nylon 6,6 has a solubility parameter of 13.7 cal 1/2 cm −3/2, and ethanol is likely to be the best solvent of those tabulated. However, the latter is polar ...
The solvent-rich phase is close to pure solvent. This is peculiar to polymers, a mixture of small molecules can be approximated using the Flory–Huggins expression with N = 1 {\displaystyle N=1} , and then ϕ cp = 1 / 2 {\displaystyle \phi _{\text{cp}}=1/2} and both coexisting phases are far from pure.
Implicit solvation (sometimes termed continuum solvation) is a method to represent solvent as a continuous medium instead of individual “explicit” solvent molecules, most often used in molecular dynamics simulations and in other applications of molecular mechanics.
The effect of the particle size on solubility constant can be quantified as follows: = + where *K A is the solubility constant for the solute particles with the molar surface area A, *K A→0 is the solubility constant for substance with molar surface area tending to zero (i.e., when the particles are large), γ is the surface tension ...
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.