When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    A graph can only contain a perfect matching when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an odd number of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c ...

  3. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    Hall's marriage theorem provides a characterization of bipartite graphs which have a perfect matching. The Tutte theorem provides a characterization for arbitrary graphs. A perfect matching is a spanning 1-regular subgraph, a.k.a. a 1-factor. In general, a spanning k-regular subgraph is a k-factor.

  4. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts and . For example, the complete bipartite graph K 3,5 has degree sequence (,,), (,,,,). Isomorphic bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in ...

  5. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    A fractional matching in a graph is an assignment of non-negative weights to each edge, such that the sum of weights adjacent to each vertex is at most 1. A fractional matching is X-perfect if the sum of weights adjacent to each vertex is exactly 1. The following are equivalent for a bipartite graph G = (X+Y, E): [13] G admits an X-perfect ...

  6. Birkhoff polytope - Wikipedia

    en.wikipedia.org/wiki/Birkhoff_polytope

    The Birkhoff polytope B n (also called the assignment polytope, the polytope of doubly stochastic matrices, or the perfect matching polytope of the complete bipartite graph , [1]) is the convex polytope in R N (where N = n 2) whose points are the doubly stochastic matrices, i.e., the n × n matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1.

  7. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    Kőnig had announced in 1914 and published in 1916 the results that every regular bipartite graph has a perfect matching, [11] and more generally that the chromatic index of any bipartite graph (that is, the minimum number of matchings into which it can be partitioned) equals its maximum degree [12] – the latter statement is known as Kőnig's ...

  8. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]

  9. FKT algorithm - Wikipedia

    en.wikipedia.org/wiki/FKT_algorithm

    a finite graph is planar if and only if it contains no subgraph homeomorphic to K 5 (complete graph on five vertices) or K 3,3 (complete bipartite graph on two partitions of size three). Vijay Vazirani generalized the FKT algorithm to graphs that do not contain a subgraph homeomorphic to K 3,3 . [ 11 ]