Search results
Results From The WOW.Com Content Network
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. More formally, given a graph G = (V, E), a perfect matching in G is a subset M of edge set E, such that every vertex in the vertex set V is adjacent to exactly one edge in M.
A graph can only contain a perfect matching when the graph has an even number of vertices. A near-perfect matching is one in which exactly one vertex is unmatched. Clearly, a graph can only contain a near-perfect matching when the graph has an odd number of vertices, and near-perfect matchings are maximum matchings. In the above figure, part (c ...
Example of a graph and one of its perfect matchings (in red). In the mathematical discipline of graph theory, the Tutte theorem, named after William Thomas Tutte, is a characterization of finite undirected graphs with perfect matchings. It is a special case of the Tutte–Berge formula.
A cubic (but not bridgeless) graph with no perfect matching, showing that the bridgeless condition in Petersen's theorem cannot be omitted. In the mathematical discipline of graph theory, Petersen's theorem, named after Julius Petersen, is one of the earliest results in graph theory and can be stated as follows: Petersen's Theorem.
In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is = {,, …,} then the Tutte matrix is an n-by-n matrix A with entries
A fractional matching in a graph is an assignment of non-negative weights to each edge, such that the sum of weights adjacent to each vertex is at most 1. A fractional matching is X-perfect if the sum of weights adjacent to each vertex is exactly 1. The following are equivalent for a bipartite graph G = (X+Y, E): [13] G admits an X-perfect ...
The minimum degree of a graph, often denoted by deg(G) or δ(v), is the minimum of deg(v) over all vertices v in V. A matching in a graph is a set of edges such that each vertex is adjacent to at most one edge; a perfect matching is a matching in which each vertex is adjacent to exactly one edge. A perfect matching does not always exist, and ...
The theory of perfect graphs developed from a 1958 result of Tibor Gallai that in modern language can be interpreted as stating that the complement of a bipartite graph is perfect; [8] this result can also be viewed as a simple equivalent of KÅ‘nig's theorem, a much earlier result relating matchings and vertex covers in bipartite graphs.