When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [1] [2] The state-space method ...

  3. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  4. Phase plane - Wikipedia

    en.wikipedia.org/wiki/Phase_plane

    In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables).

  5. Matrix differential equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_differential_equation

    A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives.

  6. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...

  7. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.

  8. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    The optimal current values of the problem's control variables at any time can be found using the solution of the Riccati equation and the current observations on evolving state variables. With multiple state variables and multiple control variables, the Riccati equation will be a matrix equation. The algebraic Riccati equation determines the ...

  9. Fundamental matrix (linear differential equation) - Wikipedia

    en.wikipedia.org/wiki/Fundamental_matrix_(linear...

    In mathematics, a fundamental matrix of a system of n homogeneous linear ordinary differential equations ˙ = () is a matrix-valued function () whose columns are linearly independent solutions of the system. [1]