When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  3. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  4. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  5. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In vector calculus, the Jacobian matrix (/ dʒ ə ˈ k oʊ b i ə n /, [1] [2] [3] / dʒ ɪ-, j ɪ-/) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.

  7. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    [1] [2] [3] That is, given an invertible matrix and the outer product of vectors and , the formula cheaply computes an updated matrix inverse (+)). The Sherman–Morrison formula is a special case of the Woodbury formula .

  8. Cancellation property - Wikipedia

    en.wikipedia.org/wiki/Cancellation_property

    Matrix multiplication also does not necessarily obey the cancellation law. If AB = AC and A ≠ 0, then one must show that matrix A is invertible (i.e. has det(A) ≠ 0) before one can conclude that B = C. If det(A) = 0, then B might not equal C, because the matrix equation AX = B will not have a unique solution for a non-invertible matrix A.

  9. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...