When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  3. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The covariance is sometimes called a measure of "linear dependence" between the two random variables. That does not mean the same thing as in the context of linear algebra (see linear dependence ). When the covariance is normalized, one obtains the Pearson correlation coefficient , which gives the goodness of the fit for the best possible ...

  4. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  5. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    The same C(x, y) is called the autocovariance function in two instances: in time series (to denote exactly the same concept except that x and y refer to locations in time rather than in space), and in multivariate random fields (to refer to the covariance of a variable with itself, as opposed to the cross covariance between two different ...

  6. Partial correlation - Wikipedia

    en.wikipedia.org/wiki/Partial_correlation

    A simple way to compute the sample partial correlation for some data is to solve the two associated linear regression problems and calculate the correlation between the residuals. Let X and Y be random variables taking real values, and let Z be the n -dimensional vector-valued random variable.

  7. Distance correlation - Wikipedia

    en.wikipedia.org/wiki/Distance_correlation

    In statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both ...

  8. Path analysis (statistics) - Wikipedia

    en.wikipedia.org/wiki/Path_analysis_(statistics)

    In statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses (MANOVA, ANOVA, ANCOVA).

  9. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Clearly, the difference between the unbiased estimator and the maximum likelihood estimator diminishes for large n. In the general case, the unbiased estimate of the covariance matrix provides an acceptable estimate when the data vectors in the observed data set are all complete: that is they contain no missing elements. One approach to ...