Search results
Results From The WOW.Com Content Network
A transcription bubble is a molecular structure formed during DNA transcription when a limited portion of the DNA double helix is unwound. The size of a transcription bubble ranges from 12 to 14 base pairs. A transcription bubble is formed when the RNA polymerase enzyme binds to a promoter and causes two DNA strands to detach. [1]
RNA polymerase, assisted by one or more general transcription factors, then selects a transcription start site in the transcription bubble, binds to an initiating NTP and an extending NTP (or a short RNA primer and an extending NTP) complementary to the transcription start site sequence, and catalyzes bond formation to yield an initial RNA product.
Replication sites can be detected by immunostaining daughter strands and replication enzymes and monitoring GFP-tagged replication factors. By these methods it is found that replication foci of varying size and positions appear in S phase of cell division and their number per nucleus is far smaller than the number of genomic replication forks.
This open complex is also called the transcription bubble. [14] Only one strand of DNA, called the template strand (also called the noncoding strand or nonsense/antisense strand), gets transcribed. [2] Transcription begins and short "abortive" nucleotide sequences approximately 10 base
The origin of replication (also called the replication origin) is a particular sequence in a genome at which replication is initiated. [1] Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full ...
In eukaryotes, nucleosome structures can complicate replication initiation. [4] They can block access of DUE-B's to the DUE, thus suppressing transcription initiation. [4] Can impede on rate. The linear nature of eukaryotic DNA, vs prokaryotic circular DNA, though, is easier to unwind its duplex once has been properly unwound from nucleosome. [4]
The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA.
The RNA polymerase, and with it the transcription bubble, travels along the noncoding strand in the opposite, 3' to 5', direction, as well as polymerizing a newly synthesized strand in 5' to 3' or downstream direction. The DNA double helix is rewound by RNA polymerase at the rear of the transcription bubble. [3]