Search results
Results From The WOW.Com Content Network
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [ 2 ]
In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani.
Ridge regression; Regularized; Least absolute deviations; ... Free open-source python implementation for robust nonlinear regression. This page was last ...
Ridge regression provides better accuracy in the case > for highly correlated variables. [2] In another case, n < d {\displaystyle n<d} , LASSO selects at most n {\displaystyle n} variables. Moreover, LASSO tends to select some arbitrary variables from group of highly correlated samples, so there is no grouping effect.
In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
The focus of Shogun is on kernel machines such as support vector machines for regression and classification problems. Shogun also offers a full implementation of Hidden Markov models. The core of Shogun is written in C++ and offers interfaces for MATLAB, Octave, Python, R, Java, Lua, Ruby and C#. Shogun has been under active development since 1999.