Search results
Results From The WOW.Com Content Network
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
The loss of accuracy during more intense anaerobic exercise is among others due to factors including the bicarbonate buffer system. The body tries to compensate for the accumulation of lactate and minimize the acidification of the blood by expelling more CO 2 through the respiratory system. [5] The RER can exceed 1.0 during intense exercise.
Glycolysis can be either an aerobic or anaerobic process. When oxygen is present, glycolysis continues along the aerobic respiration pathway. If oxygen is not present, then ATP production is restricted to anaerobic respiration. The location where glycolysis, aerobic or anaerobic, occurs is in the cytosol of the cell.
Anaerobic glycolysis is thought to have been the primary means of energy production in earlier organisms before oxygen was at high concentration in the atmosphere and thus would represent a more ancient form of energy production in cells. In mammals, lactate can be transformed by the liver back into glucose using the Cori cycle.
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Typically, the complete breakdown of one molecule of glucose by aerobic respiration (i.e. involving glycolysis, the citric-acid cycle and oxidative phosphorylation, the last providing the most energy) is usually about 30–32 molecules of ATP. [16] Oxidation of one gram of carbohydrate yields approximately 4 kcal of energy. [3]
It is used as an energy source in organisms, from bacteria to humans, through either aerobic respiration, anaerobic respiration (in bacteria), or fermentation. Glucose is the human body's key source of energy, through aerobic respiration, providing about 3.75 kilocalories (16 kilojoules) of food energy per gram. [105]