Search results
Results From The WOW.Com Content Network
The number of perfect numbers less than n is less than , where c > 0 is a constant. [53] In fact it is (), using little-o notation. [54] Every even perfect number ends in 6 or 28, base ten; and, with the only exception of 6, ends in 1 in base 9.
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4] Euclid proved c. 300 BCE that every prime expressed as M p = 2 p − 1 has a corresponding perfect number ...
Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.
Notably, absent consensus, please do not add articles about individual perfect numbers themselves (such as 6). Pages in category "Perfect numbers" The following 11 pages are in this category, out of 11 total.
The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6, and the Mersenne prime 7 corresponds in the same way to the perfect number 28.
It can be proven that: . For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p + 1)-perfect.This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number.