Search results
Results From The WOW.Com Content Network
Thereby soil bulk density is always less than soil particle density and is a good indicator of soil compaction. [47] The soil bulk density of cultivated loam is about 1.1 to 1.4 g/cm 3 (for comparison water is 1.0 g/cm 3). [48] Contrary to particle density, soil bulk density is highly variable for a given soil, with a strong causal relationship ...
The density of quartz is around 2.65 g/cm 3 but the (dry) bulk density of a mineral soil is normally about half that density, between 1.0 and 1.6 g/cm 3. In contrast, soils rich in soil organic carbon and some friable clays tend to have lower bulk densities ( <1.0 g/cm 3 ) due to a combination of the low-density of the organic materials ...
Most soils have a dry bulk density between 1.0 and 1.6 g/cm 3 but organic soil and some porous clays may have a dry bulk density well below 1 g/cm 3. Core samples are taken by pushing a metallic cutting edge into the soil at the desired depth or soil horizon. The soil samples are then oven dried (often at 105 °C) until constant weight.
where is the initial density and / denotes the derivative of pressure with respect to density. The inverse of the bulk modulus gives a substance's compressibility. Generally the bulk modulus is defined at constant temperature as the isothermal bulk modulus, but can also be defined at constant entropy as the adiabatic bulk modulus.
Water pressure, u, is negative above and positive below the free water surface. If the soil pores are filled with water that is not flowing but is static, the pore water pressures will be hydrostatic. The water table is located at the depth where the water pressure is equal to the atmospheric pressure. For hydrostatic conditions, the water ...
Aggregation involves particulate adhesion and higher resistance to compaction. Typical bulk density of sandy soil is between 1.5 and 1.7 g/cm 3. This calculates to a porosity between 0.43 and 0.36. Typical bulk density of clay soil is between 1.1 and 1.3 g/cm 3. This calculates to a porosity between 0.58 and 0.51.
These coefficients obtained, and knowing the value of the volume to ambient conditions, then we are in principle able to calculate the volume, density and bulk modulus for any pressure. The data set is mostly a series of volume measurements for different values of applied pressure, obtained mostly by X-ray diffraction.
One approximate relationship between SPT N-value, relative density, and bulk density for coarse-grained material can be seen in the table below. This is cited in the US Army Corps of Engineers engineering manual publication on sheet pile design developed after Terzaghi and Peck (1948) and Teng (1962).