When.com Web Search

  1. Ad

    related to: calculate distance between two non empty cells formula statistics chart

Search results

  1. Results From The WOW.Com Content Network
  2. Statistical distance - Wikipedia

    en.wikipedia.org/wiki/Statistical_distance

    In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

  3. Hausdorff distance - Wikipedia

    en.wikipedia.org/wiki/Hausdorff_distance

    The definition of the Hausdorff distance can be derived by a series of natural extensions of the distance function (,) in the underlying metric space M, as follows: [7] Define a distance function between any point x of M and any non-empty set Y of M by: (,) = {(,)}.

  4. Bhattacharyya distance - Wikipedia

    en.wikipedia.org/wiki/Bhattacharyya_distance

    In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions. [1] It is closely related to the Bhattacharyya coefficient , which is a measure of the amount of overlap between two statistical samples or populations.

  5. Total variation distance of probability measures - Wikipedia

    en.wikipedia.org/wiki/Total_variation_distance...

    The total variation distance (or half the norm) arises as the optimal transportation cost, when the cost function is (,) =, that is, ‖ ‖ = (,) = {(): =, =} = ⁡ [], where the expectation is taken with respect to the probability measure on the space where (,) lives, and the infimum is taken over all such with marginals and , respectively.

  6. Divergence (statistics) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(statistics)

    The two most important divergences are the relative entropy (Kullback–Leibler divergence, KL divergence), which is central to information theory and statistics, and the squared Euclidean distance (SED). Minimizing these two divergences is the main way that linear inverse problems are solved, via the principle of maximum entropy and least ...

  7. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".

  8. Gower's distance - Wikipedia

    en.wikipedia.org/wiki/Gower's_distance

    Data can be binary, ordinal, or continuous variables. It works by normalizing the differences between each pair of variables and then computing a weighted average of these differences. The distance was defined in 1971 by Gower [1] and it takes values between 0 and 1 with smaller values indicating higher similarity.

  9. Hellinger distance - Wikipedia

    en.wikipedia.org/wiki/Hellinger_distance

    In probability and statistics, the Hellinger distance (closely related to, although different from, the Bhattacharyya distance) is used to quantify the similarity between two probability distributions. It is a type of f-divergence. The Hellinger distance is defined in terms of the Hellinger integral, which was introduced by Ernst Hellinger in 1909.