When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron capture - Wikipedia

    en.wikipedia.org/wiki/Electron_capture

    Simple electron capture by itself results in a neutral atom, since the loss of the electron in the electron shell is balanced by a loss of positive nuclear charge. However, a positive atomic ion may result from further Auger electron emission. Electron capture is an example of weak interaction, one of the four fundamental forces.

  3. Neutron capture - Wikipedia

    en.wikipedia.org/wiki/Neutron_capture

    Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. [1] Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons , which are repelled electrostatically .

  4. Internal conversion - Wikipedia

    en.wikipedia.org/wiki/Internal_conversion

    The figure on the right shows the electron spectrum of 203 Hg, measured by means of a magnetic spectrometer. It includes the continuous beta spectrum and K-, L-, and M-lines due to internal conversion. Since the binding energy of the K electrons in 203 Tl is 85 keV, the K line has an energy of 279 − 85 = 194 keV. Due to lesser binding ...

  5. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    These types of decay involve the nuclear capture of electrons or emission of electrons or positrons, and thus acts to move a nucleus toward the ratio of neutrons to protons that has the least energy for a given total number of nucleons. This consequently produces a more stable (lower energy) nucleus.

  6. Atomic spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Atomic_spectroscopy

    In optical spectroscopy, energy absorbed to move an electron to a higher energy level (higher orbital) and/or the energy emitted as the electron moves to a lower energy level is absorbed or emitted in the form of photons (light particles). Because each element has a unique number of electrons, an atom will absorb/release energy in a pattern ...

  7. Neutron spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Neutron_spectroscopy

    Neutron spectroscopy is a spectroscopic method of measuring atomic and magnetic motions by measuring the kinetic energy of emitted neutrons. The measured neutrons may be emitted directly (for example, by nuclear reactions ), or they may scatter off cold matter before reaching the detector.

  8. Inverse beta decay - Wikipedia

    en.wikipedia.org/wiki/Inverse_beta_decay

    During the formation of neutron stars, or in radioactive isotopes capable of electron capture, neutrons are created by electron capture: p + e − → n + ν e. This is similar to the inverse beta reaction in that a proton is changed to a neutron, but is induced by the capture of an electron instead of an antineutrino.

  9. Neutron emission - Wikipedia

    en.wikipedia.org/wiki/Neutron_emission

    These neutrons are sometimes emitted with a delay, giving them the term delayed neutrons, but the actual delay in their production is a delay waiting for the beta decay of fission products to produce the excited-state nuclear precursors that immediately undergo prompt neutron emission. Thus, the delay in neutron emission is not from the neutron ...