When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Map (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Map_(mathematics)

    A map is a function, as in the association of any of the four colored shapes in X to its color in Y. In mathematics, a map or mapping is a function in its general sense. [1] These terms may have originated as from the process of making a geographical map: mapping the Earth surface to a sheet of paper. [2]

  3. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.

  4. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.

  5. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    For example, the term "map" is often reserved for a "function" with some sort of special structure (e.g. maps of manifolds). In particular map may be used in place of homomorphism for the sake of succinctness (e.g., linear map or map from G to H instead of group homomorphism from G to H).

  6. Bilinear map - Wikipedia

    en.wikipedia.org/wiki/Bilinear_map

    In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. A bilinear map can also be defined for modules. For that, see the article pairing.

  7. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    Interpretation for surjective functions in the Cartesian plane, defined by the mapping f : X → Y, where y = f(x), X = domain of function, Y = range of function. Every element in the range is mapped onto from an element in the domain, by the rule f. There may be a number of domain elements which map to the same range element.

  8. Operator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(mathematics)

    In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an operator , but the term is often used in place of function when the domain is a set of functions or other structured ...

  9. Conformal map - Wikipedia

    en.wikipedia.org/wiki/Conformal_map

    Another example is the application of conformal mapping technique for solving the boundary value problem of liquid sloshing in tanks. [ 19 ] If a function is harmonic (that is, it satisfies Laplace's equation ∇ 2 f = 0 {\displaystyle \nabla ^{2}f=0} ) over a plane domain (which is two-dimensional), and is transformed via a conformal map to ...