Ads
related to: 1 gauss to tesla time to charge transfer cable conversion
Search results
Results From The WOW.Com Content Network
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted .
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.
10 −1 T: decitesla: 100 mT: 1 kG: Penny-sized neodymium magnet: 150 mT: 1.5 kG: Sunspot: 10 0 T tesla 1 T: 10 kG: Inside the core of a 60 Hz power transformer (1 T to 2 T as of 2001) [10] [11] or voice coil gap of a loudspeaker magnet (1 T to 2.4 T as of 2006) [12] 1.5 T to 7 T: 15 kG to 70 kG
On average at e 1 the electron has the same velocity as the sheet (v, black arrow) in the +x direction. The magnetic field (B, green arrow) of the magnet's North pole N is directed down in the −y direction. The magnetic field exerts a Lorentz force on the electron (pink arrow) of F 1 = −e(v × B), where e is the electron's charge.
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
EMF is defined as electromagnetic work done on a unit charge when it has traveled one round of a conductive loop. The energy could now be seen as stored in the electric field. This process uses energy from the wire with power equal to the electric potential times the total charge divided by time. Where ℰ is the voltage or EMF.
The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and