Search results
Results From The WOW.Com Content Network
The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for
The partition function ties together many different concepts, and thus offers a general framework in which many different kinds of quantities may be calculated. In particular, it shows how to calculate expectation values and Green's functions, forming a bridge to Fredholm theory.
A partition in which no part occurs more than once is called strict, or is said to be a partition into distinct parts. The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts.
The only partition of zero is the empty sum, having no parts. The order-dependent composition 1 + 3 is the same partition as 3 + 1, and the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition as 2 + 1 + 1. An individual summand in a partition is called a part. The number of partitions of n is given by the partition ...
In either case, the partition function may be solved exactly using eigenanalysis. If the matrices are all the same matrix W , the partition function may be approximated as the N th power of the largest eigenvalue of W , since the trace is the sum of the eigenvalues and the eigenvalues of the product of two diagonal matrices equals the product ...
Knowing the partition function completely solves the theory since it allows for the direct calculation of all of its correlation functions. However, there are very few cases where the partition function can be calculated exactly. While free theories do admit exact solutions, interacting theories generally do not.
In statistical mechanics, the translational partition function, is that part of the partition function resulting from the movement (translation) of the center of mass. For a single atom or molecule in a low pressure gas, neglecting the interactions of molecules , the canonical ensemble q T {\displaystyle q_{T}} can be approximated by: [ 1 ]
The vibrational partition function [1] traditionally refers to the component of the canonical partition function resulting from the vibrational degrees of freedom of a system. The vibrational partition function is only well-defined in model systems where the vibrational motion is relatively uncoupled with the system's other degrees of freedom.