Search results
Results From The WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
The Eötvös effect is the change in measured Earth's gravity caused by the change in centrifugal acceleration resulting from eastbound or westbound velocity.When moving eastbound, the object's angular velocity is increased (in addition to Earth's rotation), and thus the centrifugal force also increases, causing a perceived reduction in gravitational force.
This acceleration is known as centripetal acceleration. For a path of radius r , when an angle θ is swept out, the distance traveled on the periphery of the orbit is s = rθ . Therefore, the speed of travel around the orbit is v = r d θ d t = r ω , {\displaystyle v=r{\frac {d\theta }{dt}}=r\omega ,} where the angular rate of rotation is ω .
An object moving in a circular motion—such as a satellite orbiting the Earth—is accelerating due to the change of direction of motion, although its speed may be constant. In this case it is said to be undergoing centripetal (directed towards the center) acceleration.
Since the centrifugal force of the parts of the earth, arising from the earth's diurnal motion, which is to the force of gravity as 1 to 289, raises the waters under the equator to a height exceeding that under the poles by 85472 Paris feet, as above, in Prop. XIX., the force of the sun, which we have now shewed to be to the force of gravity as ...
The surface of the Earth is a rotating reference frame. To solve classical mechanics problems exactly in an Earthbound reference frame, three fictitious forces must be introduced: the Coriolis force, the centrifugal force (described below) and the Euler force. The Euler force is typically ignored because the variations in the angular velocity ...
Centripetal force causes the acceleration measured on the rotating surface of the Earth to differ from the acceleration that is measured for a free-falling body: the apparent acceleration in the rotating frame of reference is the total gravity vector minus a small vector toward the north–south axis of the Earth, corresponding to staying ...
By Newton's Third Law, the value of little g (the perceived "downward" acceleration) is equal in magnitude and opposite in direction to the centripetal acceleration. It was tested with satellites like Bion 3 (1975) and Bion 4 (1977); they both had centrifuges on board to put some specimens in an artificial gravity environment.