Search results
Results From The WOW.Com Content Network
The acceleration due to gravity on the surface of the Moon is approximately 1.625 m/s 2, about 16.6% that on Earth's surface or 0.166 ɡ. [1] Over the entire surface, the variation in gravitational acceleration is about 0.0253 m/s 2 (1.6% of the acceleration due to gravity). Because weight is directly dependent upon gravitational acceleration ...
Vector field (blue) and its associated scalar potential field (red). Point P between earth and moon is the point of equilibrium. In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. [6]
Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the object. Gravity does not normally include the gravitational pull of the Moon and Sun, which are accounted for in terms of tidal effects.
Gravitational acceleration on the moon is roughly six times weaker than it is on Earth, so the Lunar Descent Engine didn't have to work all that hard: closer to 6,000 pounds of thrust, rather than ...
It is actually equal to the gravitational acceleration at that point. It is a generalisation of the vector form, which becomes particularly useful if more than two objects are involved (such as a rocket between the Earth and the Moon).
Vector field (blue) and its associated scalar potential field (red). Point P between earth and moon is the point of equilibrium. In physics, a gravitational field or gravitational acceleration field is a vector field used to explain the influences that a body extends into the space around itself. [1]
The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}
For example, the lunar tidal acceleration at the Earth's surface along the Moon–Earth axis is about 1.1 × 10 −7 g, while the solar tidal acceleration at the Earth's surface along the Sun–Earth axis is about 0.52 × 10 −7 g, where g is the gravitational acceleration at the Earth's surface.