Search results
Results From The WOW.Com Content Network
Using the algebraic properties of subtraction and division, along with scalar multiplication, it is also possible to “subtract” two vectors and “divide” a vector by a scalar. Vector subtraction is performed by adding the scalar multiple of −1 with the second vector operand to the first vector operand. This can be represented by the ...
Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).
In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...
Given two points x = (x 1, x 2, x 3), y = (y 1, y 2, y 3) their displacement is a vector = + + (). which specifies the position of y relative to x. The length of this vector gives the straight-line distance from x to y. Displacement has the dimensions of length.
A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. [1] A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings.
The name "dot product" is derived from the dot operator " · " that is often used to designate this operation; [1] the alternative name "scalar product" emphasizes that the result is a scalar, rather than a vector (as with the vector product in three-dimensional space).
For any vector space V, the projection X × V → X makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π −1 (U) is isomorphic [nb 11] to the trivial bundle ...
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.