When.com Web Search

  1. Ads

    related to: probability calculation example

Search results

  1. Results From The WOW.Com Content Network
  2. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    Classical definition: Initially the probability of an event to occur was defined as the number of cases favorable for the event, over the number of total outcomes possible in an equiprobable sample space: see Classical definition of probability. For example, if the event is "occurrence of an even number when a dice is rolled", the probability ...

  3. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin.

  4. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The following is an example of applying a continuity correction. Suppose one wishes to calculate Pr(X ≤ 8) for a binomial random variable X. If Y has a distribution given by the normal approximation, then Pr(X ≤ 8) is approximated by Pr(Y ≤ 8.5). The addition of 0.5 is the continuity correction; the uncorrected normal approximation gives ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    The probability of an event is then defined to be the sum of the probabilities of all outcomes that satisfy the event; for example, the probability of the event "the die rolls an even value" is (“ ”) + (“ ”) + (“ ”) = + + = .

  6. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    Bayes' theorem is named after Thomas Bayes (/ b eɪ z /), a minister, statistician, and philosopher.Bayes used conditional probability to provide an algorithm (his Proposition 9) that uses evidence to calculate limits on an unknown parameter.

  7. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    P(A|B) may or may not be equal to P(A), i.e., the unconditional probability or absolute probability of A. If P(A|B) = P(A), then events A and B are said to be independent: in such a case, knowledge about either event does not alter the likelihood of each other. P(A|B) (the conditional probability of A given B) typically differs from P(B|A).

  8. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    The marginal probability is the probability of a single event occurring, independent of other events. A conditional probability, on the other hand, is the probability that an event occurs given that another specific event has already occurred. This means that the calculation for one variable is dependent on another variable. [2]

  9. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.