Search results
Results From The WOW.Com Content Network
Hypernatremia due to diabetes insipidus as a result of a brain disorder, may be treated with the medication desmopressin. [1] If the diabetes insipidus is due to kidney problems the medication causing the problem may need to be stopped or the underlying electrolyte disturbance corrected. [1] [7] Hypernatremia affects 0.3–1% of people in ...
Reduction of fluid has little effect on the concentration of the urine. [1] Complications may include dehydration or seizures. [1] There are four types of DI, each with a different set of causes. [1] Central DI (CDI), also known as arginine vasopressin deficiency (AVP-D), [5] is due to a lack of vasopressin (antidiuretic hormone) production. [1]
As pituitary function is normal, antidiuretic hormone levels are likely to be abnormal or raised. Polyuria will continue as long as the patient is able to drink. If the patient is unable to drink and is still unable to concentrate the urine, then hypernatremia will ensue with its neurologic symptoms.
In children, the most common cause is a stroke of the ventral pons. [9]Unlike persistent vegetative state, in which the upper portions of the brain are damaged and the lower portions are spared, locked-in syndrome is essentially the opposite, caused by damage to specific portions of the lower brain and brainstem, with no damage to the upper brain.
Hypernatremia or hyponatremia can result, as can hyperkalemia or hypokalemia. [4] Lactic acidosis can result from increased anaerobic metabolism. However, the effect of acid–base balance can be variable as patients with large GI losses can become alkalotic. In cases of hemorrhagic shock, hematocrit and hemoglobin can be severely decreased ...
Natriuretic peptides and their receptors have many different effects on the body, such as controlling blood pressure and helping bones grow. Each peptide has its own unique effects and interacts with specific receptors. Scientists have observed these effects by studying mice with specific natriuretic peptides or receptors removed. [3]
Brain mapping can show how an animal's brain changes throughout its lifetime. As of 2021, scientists mapped and compared the whole brains of eight C. elegans worms across their development on the neuronal level [67] [68] and the complete wiring of a single mammalian muscle from birth to adulthood. [37]
Vasopressin is released into the brain in a circadian rhythm by neurons of the suprachiasmatic nucleus. [21] Vasopressin released from posterior pituitary is associated with nausea. [22] Recent evidence suggests that vasopressin may have analgesic effects. The analgesia effects of vasopressin were found to be dependent on both stress and sex. [23]