Search results
Results From The WOW.Com Content Network
There are two conventions regarding the standard boiling point of water: The normal boiling point is commonly given as 100 °C (212 °F) (actually 99.97 °C (211.9 °F) following the thermodynamic definition of the Celsius scale based on the kelvin) at a pressure of 1 atm (101.325 kPa).
The difference of temperatures between the freezing- and boiling-points of water under standard atmospheric pressure shall be called 100 degrees. (The same increment as the Celsius scale) Thomson's best estimates at the time were that the temperature of freezing water was 273.7 K and the temperature of boiling water was 373.7 K. [33]
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
Values are in kelvin K and degrees Celsius °C, rounded For the equivalent in degrees Fahrenheit °F, see: Boiling points of the elements (data page) Some values are predictions
Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: ... K f [2] K b [1] Water: 100.00 0.512 0.00 ... Boiling-point elevation; References
The temperature and pressure at which ordinary solid, liquid, and gaseous water coexist in equilibrium is a triple point of water. Since 1954, this point had been used to define the base unit of temperature, the kelvin, [45] [46] but, starting in 2019, the kelvin is now defined using the Boltzmann constant, rather than the triple point of water ...
For instance, precise measurements show that the boiling point of VSMOW water under one standard atmosphere of pressure is actually 373.1339 K (99.9839 °C) when adhering strictly to the two-point definition of thermodynamic temperature. When calibrated to ITS–90, where one must interpolate between the defining points of gallium and indium ...
The boiling point of water is typically considered to be 100 °C (212 °F; 373 K), especially at sea level. Pressure and a change in the composition of the liquid may alter the boiling point of the liquid. High elevation cooking generally takes longer since boiling point is a function of atmospheric pressure.