When.com Web Search

  1. Ads

    related to: perimeter of polygons 4th grade

Search results

  1. Results From The WOW.Com Content Network
  2. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    An equilateral polygon is a polygon which has all sides of the same length (for example, a rhombus is a 4-sided equilateral polygon). To calculate the perimeter of an equilateral polygon, one must multiply the common length of the sides by the number of sides.

  3. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Among all quadrilaterals with a given perimeter, the one with the largest area is the square. This is called the isoperimetric theorem for quadrilaterals. It is a direct consequence of the area inequality [38]: p.114 where K is the area of a convex quadrilateral with perimeter L.

  4. Apothem - Wikipedia

    en.wikipedia.org/wiki/Apothem

    The apothem a can be used to find the area of any regular n-sided polygon of side length s according to the following formula, which also states that the area is equal to the apothem multiplied by half the perimeter since ns = p.

  5. Perimeter of the polygon - Wikipedia

    en.wikipedia.org/?title=Perimeter_of_the_polygon&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Perimeter_of_the_polygon&oldid=724454724"

  6. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    A sequence of regular polygons with numbers of sides equal to powers of two, inscribed in a circle. The ratios between areas or perimeters of consecutive polygons in the sequence give the terms of Viète's formula. Viète obtained his formula by comparing the areas of regular polygons with 2 n and 2 n + 1 sides inscribed in a circle.

  7. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The quotients formed by the area of these polygons divided by the square of the circle radius can be made arbitrarily close to π as the number of polygon sides becomes large, proving that the area inside the circle of radius r is πr 2, π being defined as the ratio of the circumference to the diameter (C/d).