Search results
Results From The WOW.Com Content Network
The equilibrium constants for the acyl chloride-based condensation yielding yielding arylates and polyarylates are very high indeed and are reported to be 4.3 × 10 3 and 4.7 × 10 3, respectively. This reaction is thus often referred to as a 'non-equilibrium' polyesterification.
The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is ...
In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1]Thermodynamic stability occurs when a system is in its lowest energy state, or in chemical equilibrium with its environment.
The value of the equilibrium constant for the formation of a 1:1 complex, such as a host-guest species, may be calculated with a dedicated spreadsheet application, Bindfit: [4] In this case step 2 can be performed with a non-iterative procedure and the pre-programmed routine Solver can be used for step 3.
The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction. [2] So, when the free energy change is large (more than about 30 kJ mol −1), the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an ...
In coordination chemistry, a stability constant (also called formation constant or binding constant) is an equilibrium constant for the formation of a complex in solution. It is a measure of the strength of the interaction between the reagents that come together to form the complex. There are two main kinds of complex: compounds formed by the ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
This equilibrium determines the polymerization rate. An equilibrium constant that is too small may inhibit or slow the polymerization while an equilibrium constant that is too large leads to a wide distribution of chain lengths. [9] There are several requirements for the metal catalyst: