Search results
Results From The WOW.Com Content Network
An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = 1+ √ 5 / 2 is the golden ratio. Then the only real solution x = −1.84208... is given by
He understood the importance of the discriminant of the cubic equation to find algebraic solutions to certain types of cubic equations. [18] In his book Flos, Leonardo de Pisa, also known as Fibonacci (1170–1250), was able to closely approximate the positive solution to the cubic equation x 3 + 2x 2 + 10x = 20.
That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-nine polynomial to all of them.
This problem is commonly resolved by the use of spline interpolation. Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree. Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform.
The space of all natural cubic splines, for instance, is a subspace of the space of all cubic C 2 splines. The literature of splines is replete with names for special types of splines. These names have been associated with: The choices made for representing the spline, for example:
Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon; the problem may be eliminated by choosing interpolation points at Chebyshev nodes. [5]
For example, the polynomial +, which can also be written as +, has three terms. The first term has a degree of 5 (the sum of the powers 2 and 3), the second term has a degree of 1, and the last term has a degree of 0. Therefore, the polynomial has a degree of 5, which is the highest degree of any term.
Doubling the cube, also known as the Delian problem, is an ancient [a] [1]: 9 geometric problem. Given the edge of a cube , the problem requires the construction of the edge of a second cube whose volume is double that of the first.