Search results
Results From The WOW.Com Content Network
The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m 2). [1]
Pascaline (also known as the arithmetic machine or Pascal's calculator) is a mechanical calculator invented by Blaise Pascal in 1642. Pascal was led to develop a calculator by the laborious arithmetical calculations required by his father's work as the supervisor of taxes in Rouen . [ 2 ]
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] It is equal to the amount of work done when a force of one newton displaces a mass through a distance of one metre in the direction of that force.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The sound energy density level gives the ratio of a sound incidence as a sound energy value in comparison to the reference level of 1 pPa (= 10 −12 pascals). [2] It is a logarithmic measure of the ratio of two sound energy densities. The unit of the sound energy density level is the decibel (dB), a non-SI unit accepted for use with the SI ...
The British imperial units and U.S. customary units for both energy and work include the foot-pound force (1.3558 J), the British thermal unit (BTU) which has various values in the region of 1055 J, the horsepower-hour (2.6845 MJ), and the gasoline gallon equivalent (about 120 MJ). Log-base-10 of the ratios between various measures of energy
The 17th century marked the beginning of the history of mechanical calculators, as it saw the invention of its first machines, including Pascal's calculator, in 1642. [ 4 ] [ 16 ] Blaise Pascal had invented a machine which he presented as being able to perform computations that were previously thought to be only humanly possible.
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.