Search results
Results From The WOW.Com Content Network
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
Space vector modulation (SVM) is an algorithm for the control of pulse-width modulation (PWM), invented by Gerhard Pfaff, Alois Weschta, and Albert Wick in 1982. [ 1 ] [ 2 ] It is used for the creation of alternating current (AC) waveforms ; most commonly to drive 3 phase AC powered motors at varying speeds from DC using multiple class-D ...
Vladimir Naumovich Vapnik (Russian: Владимир Наумович Вапник; born 6 December 1936) is a computer scientist, researcher, and academic.He is one of the main developers of the Vapnik–Chervonenkis theory of statistical learning [1] and the co-inventor of the support-vector machine method and support-vector clustering algorithms.
Support vector machine, a machine learning algorithm; Stroboscopic effect visibility measure (SVM), a measure for assessing a type of temporal light artefacts; Other
Support vector machine; H. Hinge loss; L. Least-squares support vector machine; M. Margin (machine learning) R. Radial basis function kernel; Ranking SVM;
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .
It is the largest Wikipedia written in any Slavic language, surpassing its nearest rival, the Polish Wikipedia, by 20% in terms of the number of articles and fivefold by the parameter of depth. [4] In addition, the Russian Wikipedia is the largest Wikipedia written in Cyrillic [5] or in a script other than the Latin script. In April 2016, the ...
LIBSVM and LIBLINEAR are two popular open source machine learning libraries, both developed at the National Taiwan University and both written in C++ though with a C API. LIBSVM implements the sequential minimal optimization (SMO) algorithm for kernelized support vector machines (SVMs), supporting classification and regression. [1]