Search results
Results From The WOW.Com Content Network
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
Analytic continuation of natural logarithm (imaginary part) Analytic continuation is a technique to extend the domain of a given analytic function.Analytic continuation often succeeds in defining further values of a function, for example in a new region where an infinite series representation in terms of which it is initially defined becomes divergent.
A more familiar principal branch function, limited to real numbers, is that of a positive real number raised to the power of 1/2. For example, take the relation y = x 1/2, where x is any positive real number. This relation can be satisfied by any value of y equal to a square root of x (either positive or negative).
A simple case arises in taking the square root of a positive real number. For example, 4 has two square roots: 2 and −2; of these the positive root, 2, is considered the principal root and is denoted as 4 . {\displaystyle {\sqrt {4}}.}
In the physics of gas molecules, the root-mean-square speed is defined as the square root of the average squared-speed. The RMS speed of an ideal gas is calculated using the following equation: v RMS = 3 R T M {\displaystyle v_{\text{RMS}}={\sqrt {3RT \over M}}}