Search results
Results From The WOW.Com Content Network
A series of mixed vertical oscillators A plot of the peak acceleration for the mixed vertical oscillators. A response spectrum is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock.
A Shock Response Spectrum (SRS) [1] is a graphical representation of a shock, or any other transient acceleration input, in terms of how a Single Degree Of Freedom (SDOF) system (like a mass on a spring) would respond to that input. The horizontal axis shows the natural frequency of a hypothetical SDOF, and the vertical axis shows the peak ...
In order to classify the intensity, the JMA looks at the maximum value of the absolute velocity response spectrum (Sva) with a damping constant of 5% over a period range from 1.6 to 7.8 seconds with calculation increments of 0.2 second. This then converts to the following classes:
Shock is a vector that has units of an acceleration (rate of change of velocity). The unit g (or g ) represents multiples of the standard acceleration of gravity and is conventionally used. A shock pulse can be characterised by its peak acceleration, the duration, and the shape of the shock pulse (half sine, triangular, trapezoidal, etc.).
From the definition, it is clear that a displacement vector is a polar vector. The velocity vector is a displacement vector (a polar vector) divided by time (a scalar), so is also a polar vector. Likewise, the momentum vector is the velocity vector (a polar vector) times mass (a scalar), so is a polar vector.
It is widely used in numerical evaluation of the dynamic response of structures and solids such as in finite element analysis to model dynamic systems. The method is named after Nathan M. Newmark , [ 1 ] former Professor of Civil Engineering at the University of Illinois at Urbana–Champaign , who developed it in 1959 for use in structural ...
A boost of velocity along the beam-axis of velocity corresponds to an additive change in rapidity of using the relation = . Under such a Lorentz transformation , the rapidity of a particle will become y ′ = y + y boost {\\displaystyle y'=y+y_{\\text{boost}}} and the four-momentum becomes
The response is described here by the relative movement of the mass of this system in relation to its support. The x-axis refers to the natural frequency and the y-axis to the highest peak multiplied by the square of the quantity (2 π x natural frequency), by analogy with the relative displacement shock response spectrum .