Ad
related to: measurement geometry definition physicsstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In physics an example of a measure is spatial distribution of mass (see for example, gravity potential), or another non-negative extensive property, conserved (see conservation law for a list of these) or not. Negative values lead to signed measures, see "generalizations" below.
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
One direction in metric geometry is finding purely metric ("synthetic") formulations of properties of Riemannian manifolds. For example, a Riemannian manifold is a CAT( k ) space (a synthetic condition which depends purely on the metric) if and only if its sectional curvature is bounded above by k . [ 20 ]
A board showing distances near Visakhapatnam, India. Distance is a numerical or occasionally qualitative measurement of how far apart objects, points, people, or ideas are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over").
This definition of covering dimension can be extended from the class of normal spaces to all Tychonoff spaces merely by replacing the term "open" in the definition by the term "functionally open". An inductive dimension may be defined inductively as follows. Consider a discrete set of points (such as a finite collection of points) to be 0 ...
An alternative system of geometrized units is often used in particle physics and cosmology, in which 8πG = 1 instead. This introduces an additional factor of 8π into Newton's law of universal gravitation but simplifies the Einstein field equations , the Einstein–Hilbert action , the Friedmann equations and the Newtonian Poisson equation by ...
In geometry and kinematics, coordinate systems are used to describe the (linear) position of points and the angular position of axes, planes, and rigid bodies. [16] In the latter case, the orientation of a second (typically referred to as "local") coordinate system, fixed to the node, is defined based on the first (typically referred to as ...
In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin, orientation, and scale have been specified in physical space. It is based on a set of reference points , defined as geometric points whose position is identified both mathematically (with numerical coordinate values) and ...